Synthesis of Poly(methylphenylsilylenetrimethylene) Rich in Isotacticity Characterized by 750 MHz ¹H NMR

Yusuke Kawakami,* Kadai Takeyama, Katsuhiko Komuro, and Osamu Ooi

Graduate School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Asahidai 1-1, Tatsunokuchi, Ishikawa 923-12, Japan

Received September 3, 1997

Revised Manuscript Received November 18, 1997

Introduction. Poly(carbosilane)s have been of interest as precursors to silicon carbide. Two basic methods, namely, ring-opening polymerization of silacyclobutane,² disilacyclobutane,³ or disilacyclopentane derivatives⁴ and polyaddition of hydrosilyl compounds with (unsaturated alkyl)-substituted compounds,⁵ have been conducted to prepare a variety of poly(carbosilane)s.6 Polyaddition via hydrosilylation was first reported by Curry,^{5a} and we reported the polyaddition of 1-allyl-3hydrotetramethyldisiloxane,7 which was prepared by alkylative cleavage of cyclic trisiloxane, D₃.8 Recently, investigations focusing on thermal or liquid crystalline behavior of these polymers have been published.⁹ It is very important to control the stereochemistry of the Si atom in the repeating units to correlate precisely such behavior with the primary structure of the polymers. However only limited information has been obtained so far on the stereoregularity of these polymers. Weber, 2b Interrante,3 and Bacqué10 showed that tacticity of unsymmetrically substituted poly(silylenemethylene)s such as poly(methylethoxysilylenemethylene) can be evaluated by 500 MHz ¹H (125.7 MHz ¹³C) NMR, but definite identification was not made. Recently Rinaldi reported the use of a 600 MHz $^1H/^{13}C/^{29}Si$ tripleresonance 3D-NMR and pulse field gradient technique to evaluate the stereoregularity of poly(hydrophenylsilylenetrimethylene) without making stereoregular polymers.¹¹ However, the actual synthesis of stereoregular silicon-containing polymers is also very important in order to study the properties of these polymers. We herein wish to report the first example of the synthesis of poly(methylphenylsilylenetrimethylene) rich in isotacticity by self-polyaddition of allylhydromethylphenylsilane, and definite and quantitative evaluation of triad tacticity by 750 MHz ¹H NMR.

Experimental Section. ¹H NMR spectra were recorded on Varian NMR spectrometers, models UNITY plus (750 MHz) and Gemini 2000 (300 MHz). ¹³C (125.7 MHz) and ²⁹Si (79.5 MHz) NMR spectra were recorded on a model UNITY plus. The chemical shifts are given in ppm relative to CHCl₃ (7.26 ppm for ¹H), CDCl₃ (77.1 ppm for ¹³C), and tetramethylsilane (0.00 ppm for ²⁹Si) as internal standards in CDCl₃ unless otherwise noted. IR spectra were recorded on a JASCO VALOR–III. Gel permeation chromatography (GPC) analyses were carried out on a JASCO GPC Model HLC 880 equipped with Shodex gels KF804 and KF801 (exclusion molecular

weight, polystyrene 4.0×10^5 and 1.5×10^3 , respectively) using tetrahydrofuran as an eluent at the flow rate of 1 mL/min. The molecular weight and the molecular weight distribution were estimated using standard polystyrene.

Allylmethylphenyl[(-)-bornyloxy]silane. A solution of allyllithium¹² prepared from tetraallyltin (3.48 g, 12.3 mmol) was reacted with methylphenyldi[(-)-bornyloxy]silane¹³ (20.0 g, 46.9 mmol) in anhydrous ether (350 mL) at -40 °C for 24 h. A mixture of products (17.4 g), after treatment with phosphate buffer solution (pH 7.0) at 0 °C, was obtained by silica gel column chromatography (eluent, hexane; $R_f = 0.2$ 0.3, methylphenyldi[(-)-bornyloxy]silane and allylmethylphenyl[(-)-bornyloxy]silane in 0.9:1.0 ratio; $R_f = 0$, (-)-borneol). ¹H NMR (500 MHz, CDCl₃) assignable to allylmethylphenyl-[(-)-bornyloxy]silane: δ 0.35, 0.36 (two s, 3H, SiC H_3), 0.74-0.90 (m, 9H, Hf, Hg, Hh), 0.98 (t with fine coupling, 1H, J =12.8 Hz, Hc), 1.65-1.73 (m, 1H, Hc), 1.13-1.33 (m, 2H, Hb), 1.55-1.60 (m, 1H, Hd), 1.78-1.90 (m, 2H, SiCH₂), 2.06-2.19 (m, 2H, He), 4.00, 4.06 (two d with fine coupling, 1H, J = 9.5Hz, Ha), 4.86 (dd, $J_1 = 11.6$ Hz, $J_2 = 3.2$ Hz, 1H, cis-CH₂-CH=C H_2), 4.89 (dd, $J_1 = 18.8$ Hz, $J_2 = 3.2$ Hz, 1H, trans-CH₂-CH=CH₂), 5.76-5.85 (m, 1H, CH₂CH=CH₂), 7.32-7.41, 7.56-7.68 (m, 5H, phenyl protons); assignable to methylphenyldi[(-)-bornyloxy]silane: δ 0.31 (s, 3H, SiC H_3), 0.76, 0.80, 0.82, 0.84, 0.85 (s, 18H, Hf, Hg, Hh), 1.01 (t with fine coupling, J = 12.8Hz, 2H, Hc), 1.63-1.73 (m, 2H, Hc), 1.17 (t with fine coupling, J = 11.6 Hz, 2H, Hb, 1.24 (t with fine coupling, J = 11.6 Hz,2H, Hb), 1.55-1.60 (m, 2H, Hd), 2.06-2.19 (m, 4H, He), 4.12, 4.16 (two d with fine coupling, J = 9.2 Hz, 2H, Ha), 7.32-7.41, 7.62-7.68 (m, 10H, phenyl protons).

Optically Active Allylmethylphenylsilane. A mixture (17.4 g) of allylmethylphenyl[(–)-bornyloxy]silane and methylphenyldi[(–)-bornyloxy]silane was reduced by lithium aluminum hydride (1.32 g, 35 mmol) in ether (25 mL) by refluxing for 25 h. Silica gel column chromatography (eluent, hexane) gave chemically pure and optically active allylhydromethylphenylsilane as a colorless oil. Yield 0.81 g, 20% from methylphenyldi[(–)-bornyloxy]silane. [α] $_{\rm D}^{25} = -16.0^{\circ}$ (c 0.50, pentane).

¹H NMR (500 MHz, CDCl₃): δ 0.36 (d, J = 4.1 Hz, 3H, SiCH₃), 1.79–1.89 (m, 2H, SiCH₂), 4.39 (q, J = 3.1 Hz, 1H, SiH), 4.88 (dd, J₁ = 11.0 Hz, J₂ = 2.2 Hz, 1H, cis-CH₂-CH=CH₂), 4.91 (dd, J₁ = 14.9 Hz, J₂ = 2.2 Hz, 1H, trans-CH₂-CH=CH₂), 5.73–5.89 (m, 1H, CH₂CH=CH₂), 7.32–7.41, 7.50–7.57 (m, 5H, phenyl protons). IR (KBr plate, cm⁻¹) 3070 (aromatic C–H), 3000 (vinylic C–H), 2915 (saturated C–H), 2120 (Si–H), 1630 (C=C).

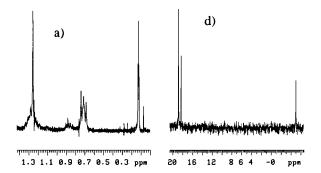
Polymerization. Polymerization was carried out in bulk at 80 °C for 12 h using 0.005 mol % 1,3-divinyl-1,1,3,3-tetramethyldisiloxane platinum catalyst. ¹⁴ The obtained polymer was recovered by precipitating into methanol and purified by repeated reprecipitation from toluene into methanol. IR spectrometric analysis of the polymer indicated the disappearance of Si–H and C=C stretching vibrations. The molecular weight and its distribution of the polymer were estimated to be $M_w = 25~000$, $M_n = 11~000$, and $M_w/M_n = 2.3$. ¹H NMR (750 MHz, CDCl₃): δ 0.12–0.13 (three s, 3H, SiC H_3), 0.68–0.75 (m, 4H, SiC H_2), 1.25–1.32 (m, 2H, SiCH₂C H_2), 7.27–7.32, 7.34–7.39 (m, 5H, phenyl protons). IR (KBr pellet, cm⁻¹) 3070 (aromatic C–H), 2915 (saturated C–H).

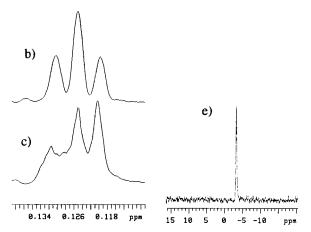
Results and Discussion. Basically three ways have been reported for obtaining optically active silicon compounds (optical resolution, ¹⁵ diastereoselection in asymmetric reduction of carbonyl compounds by dihydrosilane, ¹⁶ and the diastereoselective alkylation of di-(optically active alkoxy)silanes). ¹³ The last method was adopted in this report. The synthetic scheme for the preparation of allylhydromethylphenylsilane and polymethylphenylsilylenetrimethylene) is shown in Scheme 1.

^{*} Correspondence to Professor Yusuke Kawakami JAIST: Telephone, +81-761-51-1630; fax +81-761-51-1635; e-mail, kawakami@jaist.ac.jp.

Scheme 1. Synthesis of Monomer and Polymer

$$\begin{array}{c} \text{Ph}_{S} \text{iOBor}^{\star} & \xrightarrow{\text{CH}_2 = \text{CHCH}_2 \text{Li}} & \text{Ph}_{S} \text{i^{\text{CH}}_2} \text{CH} = \text{CH}_2 & \xrightarrow{\text{LiAIH}_4} & \text{Ph}_{S} \text{i^{\text{CH}}_2} \text{CH} = \text{CH}_2 \\ \hline \text{OBor}^{\star} & \xrightarrow{\text{El}_2 \text{O}} & \text{Ph}_{S} \text{i^{\text{CH}}_2} \text{CH} = \text{CH}_2 & \xrightarrow{\text{LiAIH}_4} & \text{Ph}_{S} \text{i^{\text{CH}}_2} \text{CH} = \text{CH}_2 \\ \hline \text{Bor}^{\star} & = \frac{b}{d} & \xrightarrow{\text{El}_2 \text{O}} & \text{Ph}_{S} \text{i^{\text{CH}}_3} \text{H}_2 & \text{Ph}_{A} \text{CH}_2 \\ \hline \text{CH}_3 & \xrightarrow{\text{CH}_3} & \xrightarrow{\text{CH}_3} & \xrightarrow{\text{CH}_3} & \text{Ph}_{S} \text{i^{\text{CH}}_3} & \text{Ph}_{S} \text{i^{\text{CH}}_3} & \text{Ph}_{S} \text{i^{\text{CH}}_3} \\ \hline \text{Nore inverse in the constraint of the constraint of$$


Table 1. Effects of the Reaction Conditions on d.e. of the Alkylated Product at - 40 $^{\circ}\text{C}$


	dialkoxysilane	alkyllithium	solvent	time (h)	d.e. (%)
1	methylphenyldimenthyloxy	allyllithium	ether	15	20
2	allylmethyldimenthyloxy	phenyllithium	ether-	20	30
			hexane		
3	methylphenyldibornyloxy	allyllithium	ether	24	60
4	allylmethyldibornyloxy	phenyllithium	ether-	24	5
		• •	hexane		

Diastereoisomeric splitting of the 1 H NMR signals was seen for SiC H_3 at 0.35 and 0.36 ppm, and for H_3 at 4.00 and 4.06 ppm, for the allylated products allylmethylphenyl[(–)-bornyloxy]silane. The diastereomeric excess (d.e.) estimated from the peak areas at 0.35 and 0.36 ppm was 60.8%. Reduction by lithium aluminum hydride gave allylhydromethylphenylsilane having $[\alpha]_D^{25} = -16.0^{\circ}$ (c 0.50, pentane). The enantiomeric excess (e.e.) of the product could not be estimated. The effects of the alkoxy group (menthyloxy, bornyloxy) and the reaction conditions on the d.e. of the alkylated product are shown in Table 1. Dibornyloxysilane gave higher d.e. than dimenthyloxysilane 13 with allyllithium.

The 300 and 750 MHz 1 H, 125.7 MHz 13 C, and 79.5 MHz 29 Si NMR spectra of the polymer are shown in Figure 1. In the aliphatic region of the 300 MHz 1 H spectrum (Figure 1a), three types of signals assignable to SiC H_3 (0.13 ppm), α -C H_2 (0.70 ppm), and β -C H_2 (1.29 ppm) were observed. No signal derived from α -addition was observed. The facts that only three kind of singlets and only one singlet were observed in the aliphatic region in 13 C (Figure 1d) and 29 Si (Figure 1e) spectra, respectively, also support the high β -regioselectivity in the hydrosilylation reaction.

In the 300 MHz ¹H spectrum, the splitting of the methyl signal resulting from triad tacticity was observed. However, the peak separation is not good enough to quantitatively evaluate the concentration of each triad. Stereoisomeric splitting caused by diad or triad tacticity is not evidently seen in the ¹³C and ²⁹Si spectra. In the 750 MHz ¹H spectrum (Figure 1b), the $SiCH_3$ signal is split into three singlets at 0.120, 0.125, and 0.131 ppm, and the separation of the methyl signal became good enough to evaluate the concentration of the triad tacticity. Even with the separated signal at hand, it is impossible to assign which signal to which triad. The 750 MHz ¹H NMR spectrum of the polymer obtained from the optically active monomer is shown in Figure 1c. Although it is not obvious if the hydrosilylation proceeds with retention or inversion of the Si stereochemistry, it is reasonable to conclude that a polymer rich in isotacticity is obtained from the optically active monomer. In Figure 1c, the signal at 0.120 ppm became relatively stronger and that at 0.131 ppm relatively weaker compared with those of the polymer

Figure 1. NMR spectra of polymers: (a) 300 MHz ¹H, (b) 750 MHz ¹H, (d) 125.7 MHz ¹³C, (e) 79.5 MHz ²⁹Si spectra of polymer from racemic monomer, (c) 750 MHz ¹H spectrum from optically active monomer.

Table 2. Stereochemistry in Polymerization

e.e. of the	calculat	calculated triad population a		
monomer (%)	S	Н	I	(%)
60	0.16	0.32	0.52	0
50	0.19	0.37	0.44	8.3
0	0.25	0.50	0.25	50

 a Calculated assuming Bernoullian statistics. b Assuming 60% e.e. of the starting monomer.

from the racemic monomer. On the basis of these facts, the signals at 0.120 and 0.131 ppm were assigned to the isotactic and syndiotactic triad, respectively, and that at 0.125 to the heterotactic triad. The calculated concentration of each triad starting from the optically active monomer with 60.8% e.e., assuming complete retention of Si stereochemistry in the reduction step by lithium aluminum hydride and in the polymerization, is S:H:I = 1.0:2.0:3.3 (0.16:0.32:0.52). The actual concentration of each triad evaluated from Figure 1c was 1.0:2.0:2.3 (0.19:0.37:0.44). This corresponds to 50.0% e.e. of starting monomer without racemization in the polymerization step (Table 2). Since reduction of the alkoxysilane by lithium aluminum hydride proceeds with retention of stereochemistry, 17 such a decrease in tacticity can be caused either by racemization of the monomer itself or in the hydrosilylation step. Nevertheless, a polymer rich in isotacticity was obtained. Further study on the detailed reaction mechanism is now in progress.

Acknowledgment. The authors are grateful to ShinEtsu Chemicals Co., Ltd., for generous donation of organosilicon compounds. This work was partially sup-

ported by a grant in aid for Scientific Research (08455438) and a grant in aid for Scientific Research in Priority Areas, "New Polymers and Their Nano-Organized Systems" (09232224) from the Ministry of Education, Science, Sports, and Culture of the Japanese Government.

References and Notes

- (1) (a) Yajima, S.; Hayashi, J.; Omori, M. *Chem. Lett.* **1975**, 931–934. (b) Yajima, S.; Okamura, K.; Hayashi, J. *Chem.* Lett. 1975, 1209-1212.
- (2) (a) Cundy, C. S.; Eaborn, C.; Lappert, M. F. J. Organomet. Chem. 1972, 44, 291-297. (b) Liao, C. X.; Weber, W. P. Polym. Bull. 1992, 28, 281-286. (c) Matsumoto, K.; Yamaoka, H. *Macromolecules* **1995**, *28*, 7029–7031. (d) Yamashita, H.; Tanaka, M.; Honda, K. J. Am. Chem. Soc. 1995, 117, 8873-8874
- (3) (a) Rushkin, I. L.; Interrante, L. V. Macromolecules 1995, 28, 5160-5161. (b) Rushkin, I. L.; Interrante, L. V. Macro-
- molecules **1996**, 29, 3123–3128. Suzuki, M.; Kaneko, T.; Morishima, Y.; Obayashi, T.; Saegusa, T. Polym. J. 1996, 28, 16-23
- (a) Curry, J. W. *J. Am. Chem. Soc.* **1956**, *78*, 1686–1689. (b) Boury, B.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Planeix, J. M.; Vioux, A. *Organometallics* **1991**, *10*, 1457– 1461. (c) Pang, Y.; I-Maghsoodi, S.; Barton, T. J. Macromolecules 1993, 26, 5671-5675. (d) Dvornic, P. R.; Gerov, V. .; Govedarica, M. N. Macromolecules 1994, 27, 7575-7580.
- (6) Weber, W. P. Trends Polym. Sci. 1993, 1, 356-360.

- (7) Shintani, K.; Ooi, O.; Mori, A.; Kawakami, Y. Polym. Bull. **1996**, 37, 705-710.
- (a) Mori, A.; Hishida, T.; Soga, Y.; Kawakami, Y. *Chem. Lett.* **1995**, 107–108. (b) Mori, A.; Sato, H.; Mizuno, K.; Hiyama, T.; Shintani, K.; Kawakami, Y. Chem. Lett. 1996, 517-518.
- (a) Koopmann, F.; Frey, H. *Makromol. Rapid Commun.* **1995**, *16*, 363–372. (b) Koopmann, F.; Frey, H. *Macromol*ecules 1996, 29, 3701-3706. (c) Sargeant, S. J.; Weber, W. P. Macromolecules 1993, 26, 2400-2407. (d) Guo, H.; Volke, R.; Weber, W. P.; Ganicz, T.; Pluta, M.; B.-Florjanezyk, E.; Stnczyk, W. J. Organomet. Chem. 1993, 444, Č9-11.
- (10) (a) Bacqué, E.; Pilot, J.-P.; Birot, M.; Dunogues, J. *Macro-molecules* **1988**, *21*, 1, 30–34. (b) Bacqué, E.; Pilot, J.-P.; Birot, M.; Dunogues, J. Macromolecules 1988, 21, 34-38.
- (11) Chai, M.; Saito, T.; Pi, Z.; Tessier, C.; Rinaldi, P. L. Macromolecules 1997, 30, 1240–1242.
- (12) Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.; John Wiley & Sons: Chichester, 1995; Vol. 7, p
- (13) Richter, W. J. J. Organomet. Chem. 1979, 169, 9-17.
- (14) Chandra, G.; Lo, P. Y.; Hitchcock, P. B.; Lappert, M. F. Organometallics 1987, 6, 191-192.
- (15) (a) Sommer, L. H.; Frey, C. L. J. Am. Chem. Soc. 1959, 81, 1013. (b) Corriu, R. J. P.; Lanneau, G. F.; Leard, M. J. Organomet. Chem. 1974, 64, 79-91.
- (16) Corriu, R. J. P. J. Organomet. Chem. 1974, 64, C51-54.
- (17) Sommer, L. H.; Michael, K. W.; Korte, W. D. J. Am. Chem. Soc. 1967, 89, 9, 868-875.

MA9713062